If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+1=19
We move all terms to the left:
12x^2+1-(19)=0
We add all the numbers together, and all the variables
12x^2-18=0
a = 12; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·12·(-18)
Δ = 864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{864}=\sqrt{144*6}=\sqrt{144}*\sqrt{6}=12\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{6}}{2*12}=\frac{0-12\sqrt{6}}{24} =-\frac{12\sqrt{6}}{24} =-\frac{\sqrt{6}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{6}}{2*12}=\frac{0+12\sqrt{6}}{24} =\frac{12\sqrt{6}}{24} =\frac{\sqrt{6}}{2} $
| -4.9t²+12t+4.5=0 | | 100x^2+2=27 | | 9x^2+7=151 | | 7x^2+8+3=5x^2+2(x^2+4x+3)-3 | | 100x^2-10=71 | | 100x-10=71 | | X^4—9x^2+81=0 | | i=5+5i | | (x2−1)2+(x2−2)2+(x2−3)2=5 | | (x2−1)^2+(x3−x)^2=0 | | 3(5-x)+2x-7=x-2(x+1) | | (x2−1)2+(x3−x)2=0 | | a/8=6.1 | | 8f-40=16 | | 3x-7=17x= | | 360=(10x+1)+(9x-11) | | 360=(4x+6)+(11x-6) | | 2/3(9m-6)=30 | | -8(-1+4p)+7p=-25-8p | | X+0.5x+x-5=100 | | x/12=9.78/18 | | 8x/4-1/4)(x-20)=x/432 | | 8x/4-1/4(x-20)=x/4+(32) | | 8x/4-1/4(x-20)=x/4+32 | | 8x/4-1/4(x-20)=x/432 | | 71+(8x+19)=180 | | -340=-4-6(8+6m) | | -96=6(-4+3k) | | 5c÷10=2 | | 6(7+2n)=90 | | -124=-4(1+4m)-4m | | -4=7m-1+4 |